Circuito RLC sinusoidale
Inviato: 7 mar 2024, 19:37
Buonasera, nella speranza che qualcuno di voi mi possa aiutare, vi scrivo per quanto riguarda la risoluzione di un circuito del secondo ordine (vecchio esame universitario), su cui sto avendo diversi problemi e dubbi.
allego le foto di riferimento.
mi soffermo su t<0, poiché ho diversi dubbi:
dopo numerose prove, ho trattato induttore e condensatore come resistenze, quindi scrivendole come conduttanze, considerando come componente effettivo l'induttore (circuito chiuso).
Successivamente ho pensato di eliminare R4 perché è in serie ad un circuito aperto (non ne sono assolutamente sicuro, però, considerando anche R4 ho avuto comunque problemi),
Ogni consiglio è assolutamente ben accetto, ringrazio chiunque provi ad aiutarmi.
Allego il codice matlab di risoluzione:
R1=1;
R2=1;
R3=1;
R4=1;
L=1/5;
C=1/20;
g=2;
%t<0 nodi
G1=1/R1;
G2=1/R2;
G3=1/R3;
G4=1/R4;
%calcolo ig sinusoidale
valore= 100;
w=10;
fase=0;
Ig0=100;
ZL=1j*w*L;
ZC=(-1j)/(w*C);
YL=1/ZL;
YC=1/ZC;
%MG=[G1+G2+G3, -G1;
% -G1, G1];
%TN=[0; -Ig0];
%e=MG\TN
%Vc0=e(1)-e(2)
%Il0=e(1)* YL;
%MZ=[G1+G2+YC+YL, -G1-YC;
% -G1-YC, G1+YC];
MZ=[YC+YL+G1+G2,-YL, -YC-G1;
-YL, G3+YL, 0;
-YC-G1, 0, YC+G1 ];
TN=[0; 0; -Ig0];
e=MZ\TN
Vc0=e(1)-e(2)
Il0=e(1)*YL
Vc0=real(Vc0)
Il0=real(Il0)
%t>0
syms Vcs Ils Igs
MC=[G4+G2,-G4,0;
g,-g-1,0;
-1,0,1];
i=[Ils-Igs;0;-Vcs];
PN=MC\i
VR1=PN(1)-PN(3);
VR3=PN(2);
iR1=VR1*G1;
iR2=-PN(1)*G2;
iR4=(-PN(1)+PN(2))*G4;
%dvCdt=(iR1-iR2-iR4+Ils)/C
dvCdt=(iR1-Igs)/C
dvLdt=(VR1+VR3-Igs)/L
syms t x1(t) x2(t);
Il0=-30;
Vc0=-2.500;
Ig = 100*cos(w*t);
x=[x1(t); x2(t)];
g=[Ig];
A = [0,20;
5/2, 5];
B = [-20;
-15/2];
Dx = [diff(x1,t)== A(1,:)*x + B(1,:)*g,
diff(x2,t)== A(2,:)*x + B(2,:)*g];
cond_ini = [x1(0)==Vc0,
x2(0)==Il0];
S = dsolve(Dx,cond_ini);
vC = simplify(S.x1)
iL = simplify(S.x2)
allego le foto di riferimento.
mi soffermo su t<0, poiché ho diversi dubbi:
dopo numerose prove, ho trattato induttore e condensatore come resistenze, quindi scrivendole come conduttanze, considerando come componente effettivo l'induttore (circuito chiuso).
Successivamente ho pensato di eliminare R4 perché è in serie ad un circuito aperto (non ne sono assolutamente sicuro, però, considerando anche R4 ho avuto comunque problemi),
Ogni consiglio è assolutamente ben accetto, ringrazio chiunque provi ad aiutarmi.
Allego il codice matlab di risoluzione:
R1=1;
R2=1;
R3=1;
R4=1;
L=1/5;
C=1/20;
g=2;
%t<0 nodi
G1=1/R1;
G2=1/R2;
G3=1/R3;
G4=1/R4;
%calcolo ig sinusoidale
valore= 100;
w=10;
fase=0;
Ig0=100;
ZL=1j*w*L;
ZC=(-1j)/(w*C);
YL=1/ZL;
YC=1/ZC;
%MG=[G1+G2+G3, -G1;
% -G1, G1];
%TN=[0; -Ig0];
%e=MG\TN
%Vc0=e(1)-e(2)
%Il0=e(1)* YL;
%MZ=[G1+G2+YC+YL, -G1-YC;
% -G1-YC, G1+YC];
MZ=[YC+YL+G1+G2,-YL, -YC-G1;
-YL, G3+YL, 0;
-YC-G1, 0, YC+G1 ];
TN=[0; 0; -Ig0];
e=MZ\TN
Vc0=e(1)-e(2)
Il0=e(1)*YL
Vc0=real(Vc0)
Il0=real(Il0)
%t>0
syms Vcs Ils Igs
MC=[G4+G2,-G4,0;
g,-g-1,0;
-1,0,1];
i=[Ils-Igs;0;-Vcs];
PN=MC\i
VR1=PN(1)-PN(3);
VR3=PN(2);
iR1=VR1*G1;
iR2=-PN(1)*G2;
iR4=(-PN(1)+PN(2))*G4;
%dvCdt=(iR1-iR2-iR4+Ils)/C
dvCdt=(iR1-Igs)/C
dvLdt=(VR1+VR3-Igs)/L
syms t x1(t) x2(t);
Il0=-30;
Vc0=-2.500;
Ig = 100*cos(w*t);
x=[x1(t); x2(t)];
g=[Ig];
A = [0,20;
5/2, 5];
B = [-20;
-15/2];
Dx = [diff(x1,t)== A(1,:)*x + B(1,:)*g,
diff(x2,t)== A(2,:)*x + B(2,:)*g];
cond_ini = [x1(0)==Vc0,
x2(0)==Il0];
S = dsolve(Dx,cond_ini);
vC = simplify(S.x1)
iL = simplify(S.x2)