Cos'è ElectroYou | Login Iscriviti

ElectroYou - la comunità dei professionisti del mondo elettrico

SOA: Emitter Crowding e Second Breakdown

Elettronica lineare e digitale: didattica ed applicazioni

Moderatori: Foto Utentecarloc, Foto UtenteDirtyDeeds, Foto UtenteIsidoroKZ, Foto Utenteg.schgor, Foto UtenteBrunoValente

2
voti

[1] SOA: Emitter Crowding e Second Breakdown

Messaggioda Foto Utenteif91 » 7 mar 2015, 10:01

Salve a tutti,
è da qualche mese che mi sono inoltrato nello studio dell'elettronica di potenza e trovo difficoltà nel comprendere come si costruisce la Safe Operating Area di un BJT. Più precisamente non riesco a capire
i fenomeni fisici dell'emitter crowding e del second breakdown: cosa sono, quando si verificano e in che modo influenzano la SOA. Ho cercato anche su altre fonti ma le cose sono un po' confuse. Qualcuno può darmi una mano a riguardo?
Grazie in anticipo.
Avatar utente
Foto Utenteif91
63 3
 
Messaggi: 5
Iscritto il: 3 mar 2015, 12:18

0
voti

[2] Re: SOA: Emitter Crowding e Second Breakdown

Messaggioda Foto Utentestrato » 8 mar 2015, 18:37

Sono interessato anche io all'argomento, il fenomeno in sè è "semplice" in quanto si ha che la corrente non scorre più attraverso l'intera area del contatto di emettitore ma solo (perché forse deviata dal campo?) attraverso una porzione della stessa.Ma questo suppongo l'abbia capito anche tu.
Capirne meglio il significato, il perché avviene e quando, rimane di difficile comprensione anche per me.
Invochiamo l'aiuto dei sommi..
Avatar utente
Foto Utentestrato
978 4 7
Expert
Expert
 
Messaggi: 358
Iscritto il: 12 dic 2011, 22:41

7
voti

[3] Re: SOA: Emitter Crowding e Second Breakdown

Messaggioda Foto Utenteafz » 8 mar 2015, 21:28

Ciao ragazzi, sono sicuro che il capitolo sui BJT di Power Electronics, Mohan-Undeland-Robbins, potrà essere di grande aiuto per la questione.

i fenomeni fisici dell'emitter crowding e del second breakdown: cosa sono, quando si verificano e in che modo influenzano la SOA.


In modo estremamente sintetico, essendo il BJT un dispositivo bipolare, è soggetto al pericolo di runaway termico: in dispositivi bipolari la conduzione è affidata ai minoritari, la cui densità aumenta all'aumentare della temperatura; il coefficiente di resistività, in funzione della temperatura, è negativo.
Se aumenta la temperatura, si ha un esempio di feedback positivo: tenendo costante la tensione applicata, se cresce la temperatura, crescerà la densità di portatori minoritari, cresce la corrente e diminuisce la resistenza, le perdite per effetto Joule aumentano, la temperatura crescerà ancora di più, facendo aumentare ancora di più la corrente... e così via... fino a che le correnti raggiungono a livelli tali da distruggere il dispositivo.

Questo meccanismo di distruzione diventa più pericoloso se la corrente non è distribuita in modo uniforme, ma al contrario, è distribuita in "filamenti" (o comunque in modo disomogeneo).
E' qui che entra in gioco il current crowding: le correnti di base provocano delle cadute di tensione, che fanno sì che il potenziale in pratica non sia lo stesso nella regione di base, determinando quindi addensamenti di corrente in alcune zone specifiche. Per esempio, se consideri la figura in basso, in funzionamento di regione attiva V_{BE} è positiva, le correnti di base laterali provocano una caduta di tensione \Delta V che si sottrae alla V_{BE}, per cui la tensione alla giunzione base-emettitore V_j_{BE} sarà maggiore ai lati, e minore al centro. (spannometricamente :D, per esempio, ai lati può essere V_j_{BE}  \approx V_{BE}, mentre al centro V_j_{BE} \approx V_{BE} - \Delta V.
Dunque, la corrente che attraversa la giunzione base-emettitore, sarà maggiore ai lati, e più piccola al centro, poiché, essendo V_j_{BE} maggiore ai lati, sarà più alta l'iniezione di portatori minoritari in quella zona della giunzione.
Quindi, la corrente tende ad addensarsi "ai lati", mentre la densità di corrente della zona centrale sarà inferiore.



(lo stesso vale anche durante il transitorio di turn off, basta invertire il verso delle correnti di base, per cui la \Delta V si inverte, e la corrente sarà più densa al centro che alla "periferia"; anzi, forse così la dinamica è perfino più chiara).

Se la corrente di concentra in "fili", allora la temperatura di questi fili sarà maggiore della temperatura delle zone circostanti, provocando un aumento della corrente stessa dei filamenti, aumentando ancora di più la temperatura, ecc... (meccanismo di feedback positivo di prima).

Inoltre, avevamo supposto una tensione d'alimentazione Vcc costante. C'è da tenere presente che il BJT sarà collegato al generatore di Vcc tramite una R (data dalla resistenza interna del generatore, dei collegamenti, ecc...); se la corrente del dispositivo aumenta, aumenta la caduta di potenziale sulla resistenza. Essendo Vcc costante, la tensione V_{CE} inevitabilmente diminuirà. Infatti, a causa del runaway termico, può essere possibile un aumento della corrente anche se la tensione Vce diminuisce.



Il fenomeno del breakdown secondario si può attenuare usando una struttura che eviti la formazione di filamenti: una soluzione è una struttura interdigitata, con piccoli emitter in parallelo, piuttosto che un unico emitter.

Infine, il breakdown secondario ha l'effetto di diminuire la SOA, essendo necessario evitare le combinazioni di tensione e corrente tali da provocare il fenomeno.

PS: ovviamente, il tutto a meno di mie cavolate!!!

PPS: altre risorse utili:
qui
qui
Avatar utente
Foto Utenteafz
1.765 1 3 8
Expert EY
Expert EY
 
Messaggi: 375
Iscritto il: 24 dic 2011, 11:02
Località: Provincia di Pavia

1
voti

[4] Re: SOA: Emitter Crowding e Second Breakdown

Messaggioda Foto Utenteafz » 9 mar 2015, 21:42

Qua si dice in modo più sintetico e chiaro quello che volevo esprimere nel messaggio precedente :D
Avatar utente
Foto Utenteafz
1.765 1 3 8
Expert EY
Expert EY
 
Messaggi: 375
Iscritto il: 24 dic 2011, 11:02
Località: Provincia di Pavia


Torna a Elettronica generale

Chi c’è in linea

Visitano il forum: Nessuno e 19 ospiti