Sommario:
Questo articolo raccoglie una richiesta fattami da Zeno, il grande admin: pubblicare sul mio blog una versione adattata ad articolo di un mio post, tramite il quale consigliavo dei libri di matematica, partendo da un livello piuttosto semplice fino ad arrivare ad un livello piuttosto avanzato.
L'articolo contiene un totale di sedici libri: quattro di livello base, cinque di livello intermedio, cinque di livello avanzato e, infine, due libri riguardanti l'uso di programmi per la matematica al calcolatore.
Per ogni libro viene riportata l'indicazione della lingua in cui è stato scritto e della sua difficoltà (per esempio se l'inglese è discorsivo o tecnico), il suo codice ISBN e il suo indice, per intero, oppure il riferimento al proprio sito web.
Anche all'interno dei vari livelli che ho individuato la complessità è crescente: il primo della lista è il libro più semplice, poi si va verso quello più approfondito.
I libri che riporto qui non sono libri di matematica teorica, ma libri di matematica applicata, dato il carattere tecnico del sito.
Per una più facile ed agevole ricerca del libro interessato, consiglio l'utilizzo del comando "mostra indice", in alto a destra in questa pagina, vicino al comando per convertire l'articolo in formato pdf.
Buona consultazione!
Libri di livello base:
________________________________________________________________________________________________
JOHN BIRD, Engineering Mathematics, Newnes
lingua: inglese tecnico per tutta la famiglia.
ISBN: 0 7506 5776 6
Ecco un libro assolutamente di base, ma che vi stupirà non soltanto per la sua completezza, ma anche per la chiarezza di esposizione e la presenza di esercizi davvero mirati alla comprensione. Questo libro vi darà le basi per poter leggere ed interpretare la lingua tecnico/scientifica senza problemi. Potrete parlare con matematici/fisici/ingegneri senza problemi, inceppamenti e incomprensioni varie ed eventuali.
Indice:
| Preface xi |
| Part I Number and Algebra |
| Revision of fractions, decimals and percentages 1 |
| 1.1 Fractions 1 |
| 1.2 Ratio and proportion 3 |
| 1.3 Decimals 4 |
| 1.4 Percentages 7 |
| 2 Indices and standard form 9 |
| 2.1 Indices 9 |
| 2.2 Worked problems on indices 9 |
| 2.3 Further worked problems on indices 11 |
| 2.4 Standard form 13 |
| 2.5 Worked problems on standard form 13 |
| 2.6 Further worked problems on standard form 14 |
| 3 Computer numbering systems 16 |
| 3.1 Binary numbers 16 |
| 3.2 Conversion of binary to decimal 16 |
| 3.3 Conversion of decimal to binary 17 |
| 3.4 Conversion of decimal to binary via octal 18 |
| 3.5 Hexadecimal numbers 20 |
| 4 Calculations and evaluation of formulae 24 |
| 4.1 Errors and approximations 24 |
| 4.2 Use of calculator 26 |
| 4.3 Conversion tables and charts 28 |
| 4.4 Evaluation of formulae 30 |
| 5 Algebra 34 |
| 5.1 Basic operations 34 |
| 5.2 Laws of Indices 36 |
| 5.3 Brackets and factorisation 38 |
| 5.4 Fundamental laws and precedence 40 |
| 5.5 Direct and inverse proportionality 42 |
| 6 Further Algebra 44 |
| 6.1 Polynomial division 44 |
| 6.2 The factor theorem 46 |
| 6.3 The remainder theorem 48 |
| 7 Partial Fractions 51 |
| 7.1 Introduction to partial fractions 51 |
| 7.2 Worked problems on partial fractions with linear factors 51 |
| 7.3 Worked problems on partial fractions with repeated linear factors 54 |
| 7.4 Worked problems on partial fractions with quadratic factors 55 |
| 8 Simple equations 57 |
| 8.1 Expressions, equations and identities 57 |
| 8.2 Worked problems on simple equations 57 |
| 8.3 Further worked problems on simple equations 59 |
| 8.4 Practical problems involving simple equations 61 |
| 8.5 Further practical problems involving simple equations 62 |
| 9 Simultaneous equations 65 |
| 9.1 Introduction to simultaneous equations 65 |
| 9.2 Worked problems on simultaneous equations in two unknowns 65 |
| 9.3 Further worked problems on simultaneous equations 67 |
| 9.4 More difficult worked problems on simultaneous equations 69 |
| 9.5 Practical problems involving simultaneous equations |
| 10 Transposition of formulae 74 |
| 10.1 Introduction to transposition of formulae 74 |
| 10.2 Worked problems on transposition of formulae 74 |
| 10.3 Further worked problems on transposition of fonnulae 75 |
| 10.4 Harder worked problems on transposition of formulae 77 |
| 11 Quadratic equations 80 |
| 11.1 Introduction to quadratic equations 80 |
| 11.2 Solution of quadratic equations by factorisation 80 |
| 11.3 Solution of quadratic cquations by 'completing thc square' 82 |
| 11.4 Solution of quadratic equations by formula 84 |
| 11.5 Practical problems involving quadratic equations 85 |
| 11.6 The solution of linear and quadratic equations simultaneously 87 |
| 12 Logarithms 89 |
| 12.1 Introduction to logarithms 89 |
| 12.2 Laws of logarithms 89 |
| 12.3 Indicial equations 92 |
| 12.4 Graphs of logarithmic functions 93 |
| 13 Exponential functions 95 |
| 13.1 The exponential function 95 |
| 13.2 Evaluating exponcntial functions 95 |
| 13.3 The power series for e^x 96 |
| 13.4 Graphs of exponential functions 98 |
| 13.5 Naperian logarithms 100 |
| 13.6 Evaluating Neperian logarithms 100 |
| 13.7 Laws of growth and decay 102 |
| 14 Number sequences 106 |
| 14.1 Arithmetic progressions 106 |
| 14.2 Worked problems on arithmctic progression 106 |
| 14.3 Further worked problems on arithmetic progressions 107 |
| 14.4 Geometric progressions 109 |
| 14.5 Worked problems on geomctric progressions 110 |
| 14.6 Further worked problems on geometric progressions 111 |
| 14.7 Combinations and permutations 112 |
| 15 The binomial series 114 |
| 15.1 Pascal's Triangle 114 |
| 15.2 The binomial series 115 |
| 15.3 Worked problems on the binomial series 115 |
| 15.4 Further worked problems on the binomial series 117 |
| 15.5 Pratical problems involving the binomial theorem 120 |
| 16 Solving equations by iterative methods 123 |
| 16.1 Introduction to iterative methods 123 |
| 16.2 The Newton-Raphson method 123 |
| 16.3 Worked problems on the Newton-Raphson method 123 |
| Multiple choice questions on chapters 1 to 16 127 |
| Part 2 Mensuration 131 |
| 17 Areas of plane figures 131 |
| 17.1 Mensuration 131 |
| 17.2 Properties of quadrilaterals 131 |
| 17.3 Worked problems on areas of plane figures 132 |
| 17.4 Further worked problems on areas of plane figures 135 |
| 17.5 Workcd problems on areas of composite figures 137 |
| 17.6 Arcas of similar shapes 138 |
| 18 The circle and its properties 139 |
| 18.1 Introduction 139 |
| 18.2 Properties of circles 139 |
| 18.3 Arc length and area of a scctor 140 |
| 18.4 Worked problems on arc length and sector of a circle 141 |
| 18.5 The equation of a circle 143 |
| 19 Volumes and surface areas of common solids 145 |
| 19.1 Volumcs and surface areas of regular solids 145 |
| 19.2 Worked problems on volumes and surface areas of regular solids 145 |
| 19.3 Further worked problems on volumes and surface areas of regular solids 147 |
| 19.4 Volumes and surface areas of frusta of pyramids and cones 151 |
| 19.5 The frustum and zone of a sphere 155 |
| 19.6 Prismoidal rule 157 |
| 19.7 Volumes of similar shapes 159 |
| 20 Irregular areas and volumes and meanvalues of waveforms 161 |
| 20.1 Arcas of irregular figures 161 |
| 20.2 Volumes of irrcgular solids 163 |
| 20.3 The mean or average value of a waveform 164 |
| Part 3 Trigonometry 171 |
| 21 Introduction to trigonometry 171 |
| 21.1 Trigonometry 171 |
| 21.2 Thc theorem of Pythagoras 171 |
| 21.3 Trigonometric ratios of acute angles 172 |
| 21.4 Fractional and surd forms of trigonometric ratios 174 |
| 21.5 Solution of right-angled triangles 175 |
| 21.6 Angles of elevation and depression 176 |
| 21.7 Evaluating trigonometrie ratios of any angles 178 |
| 21.8 Trigonometric approximations for small angles 181 |
| 22 Trigonometric waveforms 182 |
| 22.1 Graphs of trigonomctric functions 182 |
| 22.2 Angles of any magnitude 182 |
| 22.3 Thc production of a sine and cosine wave 185 |
| 22.4 Sine and cosine curvcs 185 |
| 22.5 Sinusoidal form Asin(wl ± a) 189 |
| 22.6 Waveform harmonics 192 |
| 23 Cartesian and polar co-ordinates 194 |
| 23.1 Introduction 194 |
| 23.2 Changing from Cartesian into polar co-ordinates 194 |
| 23.3 Changing from polar into Cartesian co-ordinates 196 |
| 23.4 Use of R -> P and P -> R functions on calculators 197 |
| 24 Triangles and some practical applications 199 |
| 24.1 Sine and cosine rules 199 |
| 24.2 Area of any triangle 199 |
| 24.3 Worked problems on the solution of triangles and their areas 199 |
| 24.4 Further worked problems on the solution of triangles and their areas 201 |
| 24.5 Pratical situations involving trigonometry 203 |
| 24.6 Further practical situations involving trigonometry 205 |
| 25 Trigonometric identities and equations 208 |
| 25.1 Trigonometric identities 208 |
| 25.2 Worked problems on trigonometric identities 208 |
| 25.3 Trigonometric equations 209 |
| 25.4 Worked problcms (i) on trigonometric equations 210 |
| 25.5 Worked problems (ii) on trigonometric equations 211 |
| 25.6 Worked problems (iii) on trigonometric equations 212 |
| 25.7 Worked problems (iv) on trigonometric equations 212 |
| 26 Compound angles 214 |
| 26.1 Compound angle formulae 214 |
| 26.2 Conversion of a sin(wt) + b cos (wt) into R sin(wt+a) 216 |
| 26.3 Double angles 220 |
| 26.4 Changing products of sines and cosines into sums or differences 221 |
| 26.5 Changing sums or differences of sines and cosines into products 222 |
| Multiple choice questions on chapters 17 to 26 225 |
| Part 4 Graphs 231 |
| 27 Straight line graphs 231 |
| 27.1 Introduction to graphs 231 |
| 27.2 The straight line graph 231 |
| 27.3 Practical problems involving straight line graphs 237 |
| 28 Reduction of non-linear laws to linear form 243 |
| 28.1 Determination of law 243 |
| 28.2 Determination of law involving logarithms 246 |
| 29 Graphs with logarithmic scales 251 |
| 29.1 Logarithmic scales 251 |
| 29.2 Graphs of the form y = a x^n 251 |
| 29.3 Graphs of the fonn y = a b^x 254 |
| 29.4 Graphs of the foml y = a e^(kx) 255 |
| 30 Graphical solution of equations 258 |
| 30.1 Graphical solution of simultaneous equations 258 |
| 30.2 Graphical solution of quadratic equations 259 |
| 30.3 Graphical solution of linear and quadratic equations simultaneously 263 |
| 30.4 Graphical solution of cubic equations 264 |
| 31 Functions and their curves 266 |
| 31.1 Standard curves 266 |
| 31.2 Simple transformations 268 |
| 31.3 Periodic functions 273 |
| 31.4 Continuous and discontinuous functions 273 |
| 31.5 Even and odd functions 273 |
| 31.6 Inverse functions 275 |
| Part 5 Vectors 281 |
| 32 Vectors 281 |
| 32.1 Introduction 281 |
| 32.2 Vcctor addition 281 |
| 32.3 Resolution of vectors 283 |
| 32.4 Vector subtraction 284 |
| 33 Cumbination uf waveforms 287 |
| 33.1 Combination of two periodic functions 287 |
| 33.2 Plotting periodic functions 287 |
| 33.3 Determining resultant phasors by calculation 288 |
| Part 6 Complex Numbers 291 |
| 34 Complex numbers 291 |
| 34.1 Cartesian complex numbers 291 |
| 34.2 The Argand diagram 292 |
| 34.3 Addition and subtraction of complex numbers 292 |
| 34.4 Multiplication and division of complex numbers 293 |
| 34.5 Complex equations 295 |
| 34.6 The polar form of a complex number 296 |
| 34.7 Multiplication and division in polar form 298 |
| 34.8 Applications of complex numbers 299 |
| 35 De Moivre's theorem 303 |
| 35.1 Introduction 303 |
| 35.2 Powers of complex numbers 303 |
| 35.3 Roots of complcx numbers 304 |
| Part 7 Statistics 307 |
| 36 Presentation of statistical data 307 |
| 36.1 Some statistical tcrminology 307 |
| 36.2 Presentation of ungrouped data 308 |
| 36.3 Presentation of grouped data 312 |
| 37 Measures of central tendency and dispersion 319 |
| 37.1 Measures of central tendency 319 |
| 37.2 Mean, median and mode for discrete data 319 |
| 37.3 Mean, median and mode for grouped law 320 |
| 37.4 Standard deviation 322 |
| 37.5 Quartiles, deciles and percentiles 324 |
| 38 Probability 326 |
| 38.1 Introduction to probability 326 |
| 38.2 Laws of probability 326 |
| 38.3 Worked problems on probability 327 |
| 38.4 Further worked problems on probability 329 |
| 38.5 Permutations and combinations 331 |
| 39 The binomial and Poisson distribution 333 |
| 39.1 The binomial distribution 333 |
| 39.2 The Poisson distribution 336 |
| 40 The normal distribution 340 |
| 40.1 Introduction to normal distribution 340 |
| 40.2 Testing for a normal distribution 344 |
| 41 Linear correlation 347 |
| 41.1 Introduction to linear correlation 347 |
| 41.2 The product-moment formula for determining the linear correlation coefficient 347 |
| 41.3 The significance of a coefficient of correlation 348 |
| 41.4 Worked problems on linear correlation 348 |
| 42 Linear regression 351 |
| 42.1 Introduction to linear regression 351 |
| 42.2 The least-squares regression lines 351 |
| 42.3 Worked problems on linear regression 352 |
| 43 Sampling and estimation theories 356 |
| 43.1 Introduction 356 |
| 43.2 Sampling distributions 356 |
| 43.3 The sampling distribution of the means 356 |
| 43.4 The estimation of population parameters based on a large sample size 359 |
| 43.5 Estimating the mean of a population based on a small sample size 364 |
| Multiple choice questions on chapters 27 to 43 369 |
| Part 8 Differential Calculus 375 |
| 44 Introduction to differentiation 375 |
| 44.1 Introduction to calculus 375 |
| 44.2 Functional notation 375 |
| 44.3 The gradient of a curve 376 |
| 44.4 Differentiation from first principles 377 |
| 44.5 Differentiation of y = a x^n by the general rule 379 |
| 44.6 DiITerentiation of sine and cosine functions 380 |
| 44.7 Differentiation of e^(a x) and ln(a x) 382 |
| 45 Methods of differentiation 384 |
| 45.1 Differentiation of common functions 384 |
| 45.2 Differentiation of a product 386 |
| 45.3 Differentiation of a quotient 387 |
| 45.4 Function of a function 389 |
| 45.5 Successive differentiation 390 |
| 46 Some applications of differentiation 392 |
| 46.1 Rates of change 392 |
| 46.2 Velocity and acceleration 393 |
| 46.3 Turning points 396 |
| 46.4 Practical problems involving maximum and minimum values 399 |
| 46.5 Tangents and normals 403 |
| 46.6 Small changes 404 |
| Part 9 Integral Calculus 407 |
| 47 Standard integration 407 |
| 47.1 The process of integration 407 |
| 47.2 The general solution of integrals of the form a x^n 407 |
| 47.3 Standard integrals 408 |
| 47.4 Definition integrals 411 |
| 48 Integration using algebraic substitutions 414 |
| 48.1 Introduction 414 |
| 48.2 Algebraic substitutions 414 |
| 48.3 Worked problems on integration using algebraic substitutions 414 |
| 48.4 Further worked problems on integration using algebraic substitutions 416 |
| 48.5 Change of limits 416 |
| 49 Integration using trigonometric substitutions 418 |
| 49.1 Introduction 418 |
| 49.2 Worked problems on integration of sin^2(x), cos^2(x), tan^2(x) and cot^2(x) 418 |
| 49.3 Worked problems on powers of sines and cosines 420 |
| 49.4 Worked problems on integration of products of sines and cosines 421 |
| 49.5 Worked problems on integration using the sin(t) substitution 422 |
| 49.6 Worked problems on integration using the tan(t) substitution 424 |
| 50 Integration using partial fractions 426 |
| 50.1 Introduction 426 |
| 50.2 Worked problems on integration using partial fractions with linear factors 426 |
| 50.3 Worked problems on integration using partial fractions with repeated linear factors 427 |
| 50.4 Worked problems on integration using partial fractions with quadratic factors 428 |
| 51 The t = (Theta/2) substitution 430 |
| 51.1 Introduction 430 |
| 51.2 Worked problems on the t = tan(Theta/2) substitution 430 |
| 51.3 Further worked problems on the t = tan(Theta/2) substitution 432 |
| 52 Integration by parts 434 |
| 52.1 Introduction 434 |
| 52.2 Worked problems on integration by parts 434 |
| 52.3 Further worked problems on integration by parts 436 |
| S3 Numerical integration 439 |
| 53.1 Introduction 439 |
| 53.2 The trapezoidal rule 439 |
| 53.3 The mid-ordinate rule 441 |
| 53.4 Simpson's rule 443 |
| 54 Areas under and between curves 448 |
| 54.1 Area under a curve 448 |
| 54.2 Worked problems on the area under a curve 449 |
| 54.3 Further worked problems on the area under a curve 452 |
| 54.4 The area between curves 454 |
| 55 Mean and root mean square values 457 |
| 55.1 Mean or average values 457 |
| 55.2 Root mean square values 459 |
| 56 Volumes of solids of revolution 461 |
| 56.1 Introduction 461 |
| 56.2 Worked problems on volumes of solids of revolution 461 |
| 56.3 Further worked problems on volumes of solids of revolution 463 |
| 57 Centroids of simple shapes 466 |
| 57.1 Centroids 466 |
| 57.2 The first moment of area 466 |
| 57.3 Centroid of area between a curve and the x-axis 466 |
| 57.4 Ccnlfoid of area between a curve and the y-axis 467 |
| 57.5 Worked problems of ccntroids of simple shapes 467 |
| 57.6 Further worked problems on centroids of simple shapes 468 |
| 57.7 Theorem of Pappus 471 |
| 58 Second moments of area 475 |
| 58.1 Second moments of area and radius of gyration 475 |
| 58.2 Second moment of area of regular sections 475 |
| 58.3 Parallel axis theorem 475 |
| 58.4 Perpendicular axis theorem 476 |
| 58.5 Summary of derived results 476 |
| 58.6 Worked problems on second moments of area of regular sections 476 |
| 58.7 Worked problems on second moments of areas of composite areas 480 |
| Part 10 Further Number and Algebra 483 |
| 59 Boolesn algebra and logic circuits 483 |
| 59.1 Boolean algebra and switching circuits 483 |
| 59.2 Simplifying Boolean expressions 488 |
| 59.3 Laws and rules of Boolean algebra 488 |
| 59.4 De Morgan's laws 490 |
| 59.5 Karnaugh maps 491 |
| 59.6 Logic circuits 495 |
| 59.7 Universal logic circuits 500 |
| 60 The theory of matrices and determinants 504 |
| 60.1 Matrix notation 504 |
| 60.2 Addition, subtraction and multiplication of matrices 504 |
| 60.3 The unit matrix 508 |
| 60.4 The determinant of a 2 by 2 matrix 508 |
| 60.5 The inverse or reciprocal of a 2 by 2 matrix 509 |
| 60.6 The determinant of a 3 by 3 matrix 510 |
| 60.7 The inverse or reciprocal of a 3 by 3 matrix 511 |
| 61 The solution of simultaneous equations by matrices and determinants 514 |
| 61.1 Solution of simultaneous equations by matrices 514 |
| 61.2 Solution of simultaneous equations by determinants 516 |
| 61.3 Solution of simultaneous equations using Cramers rule 520 |
| Multiple choice questions on chapters 44-61 522 |
| Answers to multiple choice questions 526 |
| index 527 |
Nota: Esiste una nuova edizione del testo, che potrete trovare qui. Questa ultima nuova edizione non è significativamente diversa dalla precedente, qui riportata, se non che viene indicato l'avvenuto incorporamento dell' errata-corrige, nel nuovo testo. Potete quindi scegliere se risparmiare qualcosa comprando l'edizione vecchia oppure investire qualche soldino in più, a fronte di una maggiore comodità.
________________________________________________________________________________________________
Dr Steven lan Barry & Dr Stephen Alan Davis ,ESSENTIAL MATHEMATICAL SKILLS for engineering, science and applied mathematics , UNSW Press.
lingua: inglese tecnico.
ISBN: 0 86840 565 5.
Questo libro riporta le prime cose da sapere e da ricordare per poter argomentare il linguaggio matematico. E' leggermente più approfondito del precedente, seppur non di molto.
Ecco l'indice, per farsi la propria idea:
| Preface ............................................ ix |
| 1 Algebra and Geometry |
| 1.1 Elementary Notation .................................. 1 |
| 1.2 Fractions ........................................ 2 |
| 1.3 Modulus ......................................... 3 |
| 1.4 Inequalities ....................................... 3 |
| 1.5 Expansion and Factorisation .............................. 4 |
| 1.5.1 Binomial Expansion .............................. 5 |
| 1.5.2 Factorising Polynomials ............................ 6 |
| 1.6 Partial Fractions ..................................... 6 |
| 1.7 Polynomial Division .................................. 9 |
| 1.8 Surds .......................................... 10 |
| 1.8.1 Rafionalising Surd Denominators ....................... 10 |
| 1.9 Quadratic Equation ................................... 11 |
| 1.10 Summation ....................................... 12 |
| 1.11 Factorial Notation .................................... 12 |
| 1.12 Permutations ...................................... 13 |
| 1.13 Combinations ...................................... 13 |
| 1.14 Geometry ........................................ 14 |
| 1.14.1 Circles ..................................... 15 |
| 1.15 Example Questions ................................... 16 |
| 2 Functions and Graphs 17 |
| 2.1 The Basic Functions and Curves ............................ 17 |
| 2.2 Function Properties ................................... 18 |
| 2.3 Straight Lines ...................................... 21 |
| 2.4 Quadratics ........................................ 22 |
| 2.5 Polynomials ....................................... 23 |
| 2.6 Hyperbola ........................................ 24 |
| 2.7 Exponential and Logarithm Functions ......................... 25 |
| 2.8 Trigonometric Functions ................................ 26 |
| 2.9 Circles .......................................... 27 |
| 2.10 Ellipses ......................................... 28 |
| 2.11 Example Questions ................................... 29 |
| 3 Transcendental Functions 31 |
| 3.1 Exponential Function .................................. 31 |
| 3.2 Index Laws ....................................... 32 |
| 3.3 Logarithm Rules .................................... 33 |
| 3.4 Trigonometric Functions ................................ 35 |
| 3.5 Trigonometric Identities ................................ 36 |
| 3.6 Hyperbolic Functions .................................. 38 |
| 3.7 Example Questions ................................... 39 |
| 4 Differentiation 41 |
| 4.1 First Principles ..................................... 41 |
| 4.2 Linearity ......................................... 42 |
| 4.3 Simple Derivatives ................................... 43 |
| 4.4 Product Rule ...................................... 43 |
| 4.5 Quotient Rule ...................................... 44 |
| 4.6 Chain Rule ....................................... 45 |
| 4.7 Implicit Differentiation ................................. 46 |
| 4.8 Parametric Differentiation ............................... 47 |
| 4.9 Second Derivative .................................... 47 |
| 4.10 Stationary Points .................................... 48 |
| 4.11 Example Questions ................................... 50 |
| 5 Integration 51 |
| 5.1 Antidifferentiation ................................... 51 |
| 5.2 Simple Integrals ..................................... 52 |
| 5.3 The Definite Integral .................................. 53 |
| 5.4 Areas .......................................... 55 |
| 5.5 Integration by Substitution ............................... 56 |
| 5.6 Integration by Parts ................................... 57 |
| 5.7 Example Questions ................................... 58 |
| 6 Matrices 59 |
| 6.1 Addition ......................................... 59 |
| 6.2 Multiplication ...................................... 60 |
| 6.3 Identity ......................................... 61 |
| 6.4 Transpose ........................................ 62 |
| 6.5 Determinants ...................................... 63 |
| 6.5.1 Cofactor Expansion ............................... 64 |
| 6.6 Inverse .......................................... 65 |
| 6.6.1 Two by Two Matrices .............................. 66 |
| 6.6.2 Partitioned Matrix ............................... 66 |
| 6.6.3 Cofactors Matrix ................................ 67 |
| 6.7 Matrix Manipulation .................................. 68 |
| 6.8 Systems of Equations .................................. 70 |
| 6.9 Eigenvalues and Eigenvectors .............................. 73 |
| 6.10 Trace .......................................... 74 |
| 6.11 Symmetric Matrices ................................... 74 |
| 6.12 Diagonal Matrices .................................... 74 |
| 6.13 Example Questions ................................... 75 |
| 7 Vectors 77 |
| 7.1 Vector Notation ..................................... 77 |
| 7.2 Addition and Scalar Multiplication ........................... 78 |
| 7.3 Length .......................................... 79 |
| 7.4 Cartesian Unit Vectors ................................. 80 |
| 7.5 Dot Product ....................................... 80 |
| 7.6 Cross Product ...................................... 82 |
| 7.7 Linear Independence .................................. 83 |
| 7.8 Example Questions ................................... 86 |
| 8 Asymptotics and Approximations 87 |
| 8.1 Limits .......................................... 87 |
| 8.2 L'Hopital's Rule ..................................... 88 |
| 8.3 Taylor Series ...................................... 88 |
| 8.4 Asymptofics ....................................... 89 |
| 8.5 Example Questions ................................... 90 |
| 9 Complex Numbers 91 |
| 9.1 Definition ........................................ 91 |
| 9.2 Addition and Multiplication .............................. 92 |
| 9.3 Complex Conjugate ................................... 92 |
| 9.4 Euler's Equation ..................................... 93 |
| 9.5 De Moivre's Theorem .................................. 94 |
| 9.6 Example Questions ................................... 95 |
| 10 Differential Equations 97 |
| 10.1 First Order Differential Equations ........................... 97 |
| 10.1.1 Integrable .................................... 97 |
| 10.1.2 Separable .................................... 98 |
| 10.1.3 Integrating Factor ................................ 99 |
| 10.2 Second Order Differential Equations .......................... 100 |
| 10.2.1 Homogeneous ................................. 100 |
| 10.2.2 Inhomogeneous ................................. 102 |
| 10.3 Example Questions ................................... 105 |
| 11 Multivariable Calculus 107 |
| 11.1 Partial Differentiation .................................. 107 |
| 11.2 Grad, Div and Curl ................................... 108 |
| 11.3 Double Integrals ..................................... 111 |
| 11.4 Example Questions ................................... 114 |
| 12 Numerical Skills 115 |
| 12.1 Integration ........................................ 115 |
| 12.2 Differentiation ...................................... 116 |
| 12.3 Newton's Method .................................... 117 |
| 12.4 Differential Equations .................................. 118 |
| 12.5 Fourier Series ...................................... 119 |
| 12.5.1 Even Fourier Series ............................... 120 |
| 12.5.2 Odd Fourier Series ............................... 121 |
| 12.6 Example Questions ................................... 122 |
| 13 Practice Tests 123 |
| 13.1 Test 1: First Year -- Semester One ........................... 124 |
| 13.2 Test 2: First Year -- Semester One ........................... 125 |
| 13.3 Test 3: First Year -- Semester Two ........................... 126 |
| 13.4 Test 4: First Year -- Semester Two ........................... 127 |
| 13.5 Test 5: Second Year ................................... 128 |
| 13.6 Test 6: Second Year ................................... 129 |
| 14 Answers 131 |
| 15 Other Essential Skills 143 [Nota: sono pagine lasciate in bianco per poter scrivere i propri appunti] |
| Index 146 |
________________________________________________________________________________________________
Robert Kaplan and Ellen Kaplan, The Art of the Infinite - The Pleasures of Math, Oxford university press
lingua: inglese discorsivo.
ISBN: 0-19-514743-X
Ecco un libro che NON è un libro tecnico, ma non per questo è meno importante. Non troverete ricette o metodi ma dalla lettura imparerete cosa significa ragionare come un matematico e apprezzerete la matematica come strumento di pensiero e di fantasia. Indispensabile per tenere la mente aperta senza rischiare che il cervello possa cadervi fuori. Leggetelo d'estate sdraiati su un'amaca in un posto sperduto e vi perderete ancora di più ... comincerete a ragionare da matematici! Indispensabile per un tecnico.
Da pagina 167:
The motto which I should adopt against a course calculated to stop the progress of discovery would be—remember √(-1). —Augustus de Morgan
________________________________________________________________________________________________
John B.Reade,Calculus with Complex Numbers Taylor & Francis
lingua: inglese tecnico.
ISBN: 041530847X
Mai più senza numeri complessi! Dopo aver studiato questo libro, che contiene tutto ciò che può servire ad un tecnico riguardo a numeri complessi, non potrete più dire di non saperli (se è vero che non li sapete...). E' un libro introduttivo perché non contiene le trasformate integrali e altri operatori utili al fisico o all'ingegnere.
Ecco l'indice del libro:
| Preface |
| 1 Complex numbers |
| 2 Complex functions |
| 3 Derivatives |
| 4 Integrals |
| 5 Evaluation of finite real integrals |
| 6 Evaluation of infinite real integrals |
| 7 Summation of series |
| 8 Fundamental theorem of algebra |
| Solutions to examples |
| Appendix 1: Cauchy's theorem |
| Appendix 2: Half residue theorem |
| Bibliography |
| Index ofsymbols and abbreviations |
| General index |
Libri di livello intermedio:
Se siete riusciti ad arrivare vivi fin qui, come prima cosa prendetevi un gelato, e come seconda studiatevi questo libro:
________________________________________________________________________________________________
Peter J. Olver,Cheri Shakiban, Applied Linear Algebra Pearson
lingua: inglese tecnico.
ISBN: 0131473824
Questo libro insegna a cavarsela con l'algebra lineare, abilità tecnica fondamentale. Su questo sito potete leggere l'indice. Mentre su questo potete trovare la pagina in cui Olver parla del suo libro, pubblica l'errata corrige e tante tante altre informazioni. Presenta anche altri libri, di livello un po' più avanzato. Utile e bella è questa pagina, sempre di Olver, attraverso la quale si possono leggere i capitoli non pubblicati del libro, da scaricare prima che diventino un nuovo libro pubblicato. I capitoli non pubblicati appartengono ad un livello un po' alto rispetto a questa fascia. Riuscirete a comprenderli pienamente al livello successivo.
Passiamo all'analisi, materia che risulta essere fondamentale per tutta la fisica e l'ingegneria.
________________________________________________________________________________________________
Giovanni Prodi, Lezioni di analisi matematica: 2, Bollati Boringheri
lingua: italiano tecnico, non tradotto.
ISBN: 8833958124
Per una volta, un buon libro in Italiano di Analisi 2. Scritto dal fratello dell'ex presidente del consiglio [no, no, non quello del Bunga Bunga...] Su questo sito troverete la recensione della Bollati Boringheri. Presenti moltissimi esempi ed esercizi.
Argomenti trattati:
| 1 Successioni e serie di funzioni |
| 2 Spazi metrici |
| 3 Funzioni di più variabili |
| 4 Equazioni differenziali ordinarie |
| 5 Curve ed integrali curvilinei |
| 6 Forme differenziali lineari |
| 7 Integrali multipli |
| 8 Superfici e integrali di superficie |
| 9 Funzioni implicite |
________________________________________________________________________________________________
Christopher J. Zarowski,An Introduction to Numerical Analysis for Electrical and Computer Engineers ,Wiley
lingua: inglese tecnico.
ISBN: 0-471-46737-5
Un libro di Analisi Numerica, una disciplina che richiede conoscenze intermedie e non di base, per poter essere studiata.
Indice:
| Preface xiii |
| 1 Functional Analysis Ideas 1 |
| 1.1 Introduction 1 |
| 1.2 Some Sets 2 |
| 1.3 Some Special Mappings: Metrics, Norms, and Inner Products 4 |
| 1.3.1 Metrics and Metric Spaces 6 |
| 1.3.2 Norms and Normed Spaces 8 |
| 1.3.3 Inner Products and Inner Product Spaces 14 |
| 1.4 The Discrete Fourier Series (DFS) 25 |
| Appendix 1.A Complex Arithmetic 28 |
| Appendix 1.B Elementary Logic 31 |
| References 32 |
| Problems 33 |
| 2 Number Representations 38 |
| 2.1 Introduction 38 |
| 2.2 Fixed-Point Representations 38 |
| 2.3 Floating-Point Representations 42 |
| 2.4 Rounding Effects in Dot Product Computation 48 |
| 2.5 Machine Epsilon 53 |
| Appendix 2.A Review of Binary Number Codes 54 |
| References 59 |
| Problems 59 |
| 3 Sequences and Series 63 |
| 3.1 Introduction 63 |
| 3.2 Cauchy Sequences and Complete Spaces 63 |
| 3.3 Pointwise Convergence and Uniform Convergence 70 |
| 3.4 Fourier Series 73 |
| 3.5 Taylor Series 78 |
| 3.6 Asymptotic Series 97 |
| 3.7 More on the Dirichlet Kernel 103 |
| 3.8 Final Remarks 107 |
| Appendix 3.A COordinate Rotation DI gital Computing (CORDIC) 107 |
| 3.A.1 Introduction 107 |
| 3.A.2 The Concept of a Discrete Basis 108 |
| 3.A.3 Rotating Vectors in the Plane 112 |
| 3.A.4 Computing Arctangents 114 |
| 3.A.5 Final Remarks 115 |
| Appendix 3.B Mathematical Induction 116 |
| Appendix 3.C Catastrophic Cancellation 117 |
| References 119 |
| Problems 120 |
| 4 Linear Systems of Equations 127 |
| 4.1 Introduction 127 |
| 4.2 Least-Squares Approximation and Linear Systems 127 |
| 4.3 Least-Squares Approximation and Ill-Conditioned Linear Systems 132 |
| 4.4 Condition Numbers 135 |
| 4.5 LU Decomposition 148 |
| 4.6 Least-Squares Problems and QR Decomposition 161 |
| 4.7 Iterative Methods for Linear Systems 176 |
| 4.8 Final Remarks 186 |
| Appendix 4.A Hilbert Matrix Inverses 186 |
| Appendix 4.B SVD and Least Squares 191 |
| References 193 |
| Problems 194 |
| 5 Orthogonal Polynomials 207 |
| 5.1 Introduction 207 |
| 5.2 General Properties of Orthogonal Polynomials 207 |
| 5.3 Chebyshev Polynomials 218 |
| 5.4 Hermite Polynomials 225 |
| 5.5 Legendre Polynomials 229 |
| 5.6 An Example of Orthogonal Polynomial Least-Squares Approximation 235 |
| 5.7 Uniform Approximation 238 |
| References 241 |
| Problems 241 |
| 6 Interpolation 251 |
| 6.1 Introduction 251 |
| 6.2 Lagrange Interpolation 252 |
| 6.3 Newton Interpolation 257 |
| 6.4 Hermite Interpolation 266 |
| 6.5 Spline Interpolation 269 |
| References 284 |
| Problems 285 |
| 7 Nonlinear Systems of Equations 290 |
| 7.1 Introduction 290 |
| 7.2 Bisection Method 292 |
| 7.3 Fixed-Point Method 296 |
| 7.4 Newton–Raphson Method 305 |
| 7.4.1 The Method 305 |
| 7.4.2 Rate of Convergence Analysis 309 |
| 7.4.3 Breakdown Phenomena 311 |
| 7.5 Systems of Nonlinear Equations 312 |
| 7.5.1 Fixed-Point Method 312 |
| 7.5.2 Newton–Raphson Method 318 |
| 7.6 Chaotic Phenomena and a Cryptography Application 323 |
| References 332 |
| Problems 333 |
| 8 Unconstrained Optimization 341 |
| 8.1 Introduction 341 |
| 8.2 Problem Statement and Preliminaries 341 |
| 8.3 Line Searches 345 |
| 8.4 Newton’s Method 353 |
| 8.5 Equality Constraints and Lagrange Multipliers 357 |
| Appendix 8.A MATLAB Code for Golden Section Search 362 |
| References 364 |
| Problems 364 |
| 9 Numerical Integration and Differentiation 369 |
| 9.1 Introduction 369 |
| 9.2 Trapezoidal Rule 371 |
| 9.3 Simpson’s Rule 378 |
| 9.4 Gaussian Quadrature 385 |
| 9.5 Romberg Integration 393 |
| 9.6 Numerical Differentiation 401 |
| References 406 |
| Problems 406 |
| 10 Numerical Solution of Ordinary Differential Equations 415 |
| 10.1 Introduction 415 |
| 10.2 First-Order ODEs 421 |
| 10.3 Systems of First-Order ODEs 442 |
| 10.4 Multistep Methods for ODEs 455 |
| 10.4.1 Adams–Bashforth Methods 459 |
| 10.4.2 Adams–Moulton Methods 461 |
| 10.4.3 Comments on the Adams Families 462 |
| 10.5 Variable-Step-Size (Adaptive) Methods for ODEs 464 |
| 10.6 Stiff Systems 467 |
| 10.7 Final Remarks 469 |
| Appendix 10.A MATLAB Code for Example 10.8 469 |
| Appendix 10.B MATLAB Code for Example 10.13 470 |
| References 472 |
| Problems 473 |
| 11 Numerical Methods for Eigenproblems 480 |
| 11.1 Introduction 480 |
| 11.2 Review of Eigenvalues and Eigenvectors 480 |
| 11.3 The Matrix Exponential 488 |
| 11.4 The Power Methods 498 |
| 11.5 QR Iterations 508 |
| References 518 |
| Problems 519 |
| 12 Numerical Solution of Partial Differential Equations 525 |
| 12.1 Introduction 525 |
| 12.2 A Brief Overview of Partial Differential Equations 525 |
| 12.3 Applications of Hyperbolic PDEs 528 |
| 12.3.1 The Vibrating String 528 |
| 12.3.2 Plane Electromagnetic Waves 534 |
| 12.4 The Finite-Difference (FD) Method 545 |
| 12.5 The Finite-Difference Time-Domain (FDTD) Method 550 |
| Appendix 12.A MATLAB Code for Example 12.5 557 |
| References 560 |
| Problems 561 |
| 13 An Introduction to MATLAB 565 |
| 13.1 Introduction 565 |
| 13.2 Startup 565 |
| 13.3 Some Basic Operators, Operations, and Functions 566 |
| 13.4 Working with Polynomials 571 |
| 13.5 Loops 572 |
| 13.6 Plotting and M-Files 573 |
| References 577 |
| Index 579 |
________________________________________________________________________________________________
T.T. Soong,FUNDAMENTALS OF PROBABILITY AND STATISTICS FOR ENGINEERS,Wiley
lingua: inglese tecnico.
ISBN: 0-470-86813-9
Un buon libro di probabilità e statistica, con numerosi esempi ed esercizi, per fornire i fondamenti di queste discipline, non banali e non di livello base. Alcuni esercizi di questo libro li trovo un po' difficili rispetto al livello del testo.
Indice:
| PREFACE xiii |
| 1 INTRODUCTION 1 |
| 1.1 Organization of Text 2 |
| 1.2 Probability Tables and Computer Software 3 |
| 1.3 Prerequisites 3 |
| PART A: PROBABILITY AND RANDOM VARIABLES 5 |
| 2 BASIC PROBABILITY CONCEPTS 7 |
| 2.1 Elements of Set Theory 8 |
| 2.1.1 Set Operations 9 |
| 2.2 Sample Space and Probability Measure 12 |
| 2.2.1 Axioms of Probability 13 |
| 2.2.2 Assignment of Probability 16 |
| 2.3 Statistical Independence 17 |
| 2.4 Conditional Probability 20 |
| Reference 28 |
| Further Reading 28 |
| Problems 28 |
| 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 37 |
| 3.1 Random Variables 37 |
| 3.2 Probability Distributions 39 |
| 3.2.1 Probability Distribution Function 39 |
| 3.2.2 Probability Mass Function for Discrete Random Variables 41 |
| 3.2.3 Probability Density Function for Continuous Random Variables 44 |
| 3.2.4 Mixed-Type Distribution 46 |
| 3.3 Two or More Random Variables 49 |
| 3.3.1 Joint Probability Distribution Function 49 |
| 3.3.2 Joint Probability Mass Function 51 |
| 3.3.3 Joint Probability Density Function 55 |
| 3.4 Conditional Distribution and Independence 61 |
| Further Reading and Comments 66 |
| Problems 67 |
| 4 EXPECTATIONS AND MOMENTS 75 |
| 4.1 Moments of a Single Random Variable 76 |
| 4.1.1 Mean, Median, and Mode 76 |
| 4.1.2 Central Moments, Variance, and Standard Deviation 79 |
| 4.1.3 Conditional Expectation 83 |
| 4.2 Chebyshev Inequality 86 |
| 4.3 Moments of Two or More Random Variables 87 |
| 4.3.1 Covariance and Correlation Coefficient 88 |
| 4.3.2 Schwarz Inequality 92 |
| 4.3.3 The Case of Three or More Random Variables 92 |
| 4.4 Moments of Sums of Random Variables 93 |
| 4.5 Characteristic Functions 98 |
| 4.5.1 Generation of Moments 99 |
| 4.5.2 Inversion Formulae 101 |
| 4.5.3 Joint Characteristic Functions 108 |
| Further Reading and Comments 112 |
| Problems 112 |
| 5 FUNCTIONS OF RANDOM VARIABLES 119 |
| 5.1 Functions of One Random Variable 119 |
| 5.1.1 Probability Distribution 120 |
| 5.1.2 Moments 134 |
| 5.2 Functions of Two or More Random Variables 137 |
| 5.2.1 Sums of Random Variables 145 |
| 5.3 m Functions of n Random Variables 147 |
| Reference 153 |
| Problems 154 |
| 6 SOME IMPORTANT DISCRETE DISTRIBUTIONS 161 |
| 6.1 Bernoulli Trials 161 |
| 6.1.1 Binomial Distribution 162 |
| 6.1.2 Geometric Distribution 167 |
| 6.1.3 Negative Binomial Distribution 169 |
| 6.2 Multinomial Distribution 172 |
| 6.3 Poisson Distribution 173 |
| 6.3.1 Spatial Distributions 181 |
| 6.3.2 The Poisson Approximation to the Binomial Distribution 182 |
| 6.4 Summary 183 |
| Further Reading 184 |
| Problems 185 |
| 7 SOME IMPORTANT CONTINUOUS DISTRIBUTIONS 191 |
| 7.1 Uniform Distribution 191 |
| 7.1.1 Bivariate Uniform Distribution 193 |
| 7.2 Gaussian or Normal Distribution 196 |
| 7.2.1 The Central Limit Theorem 199 |
| 7.2.2 Probability Tabulations 201 |
| 7.2.3 Multivariate Normal Distribution 205 |
| 7.2.4 Sums of Normal Random Variables 207 |
| 7.3 Lognormal Distribution 209 |
| 7.3.1 Probability Tabulations 211 |
| 7.4 Gamma and Related Distributions 212 |
| 7.4.1 Exponential Distribution 215 |
| 7.4.2 Chi-Squared Distribution 219 |
| 7.5 Beta and Related Distributions 221 |
| 7.5.1 Probability Tabulations 223 |
| 7.5.2 Generalized Beta Distribution 225 |
| 7.6 Extreme-Value Distributions 226 |
| 7.6.1 Type-I Asymptotic Distributions of Extreme Values 228 |
| 7.6.2 Type-II Asymptotic Distributions of Extreme Values 233 |
| 7.6.3 Type-III Asymptotic Distributions of Extreme Values 234 |
| 7.7 Summary 238 |
| References 238 |
| Further Reading and Comments 238 |
| Problems 239 |
| PART B: STATISTICAL INFERENCE, PARAMETER ESTIMATION, AND MODEL VERIFICATION 245 |
| 8 OBSERVED DATA AND GRAPHICAL REPRESENTATION 247 |
| 8.1 Histogram and Frequency Diagrams 248 |
| References 252 |
| Problems 253 |
| 9 PARAMETER ESTIMATION 259 |
| 9.1 Samples and Statistics 259 |
| 9.1.1 Sample Mean 261 |
| 9.1.2 Sample Variance 262 |
| 9.1.3 Sample Moments 263 |
| 9.1.4 Order Statistics 264 |
| 9.2 Quality Criteria for Estimates 264 |
| 9.2.1 Unbiasedness 265 |
| 9.2.2 Minimum Variance 266 |
| 9.2.3 Consistency 274 |
| 9.2.4 Sufficiency 275 |
| 9.3 Methods of Estimation 277 |
| 9.3.1 Point Estimation 277 |
| 9.3.2 Interval Estimation 294 |
| References 306 |
| Further Reading and Comments 306 |
| Problems 307 |
| 10 MODEL VERIFICATION 315 |
| 10.1 Preliminaries 315 |
| 10.1.1 Type-I and Type-II Errors 316 |
| 10.2 Chi-Squared Goodness-of-Fit Test 316 |
| 10.2.1 The Case of Known Parameters 317 |
| 10.2.2 The Case of Estimated Parameters 322 |
| 10.3 Kolmogorov–Smirnov Test 327 |
| References 330 |
| Further Reading and Comments 330 |
| Problems 330 |
| 11 LINEAR MODELS AND LINEAR REGRESSION 335 |
| 11.1 Simple Linear Regression 335 |
| 11.1.1 Least Squares Method of Estimation 336 |
| 11.1.2 Properties of Least-Square Estimators 342 |
| 11.1.3 Unbiased Estimator for 2 345 |
| 11.1.4 Confidence Intervals for Regression Coefficients 347 |
| 11.1.5 Significance Tests 351 |
| 11.2 Multiple Linear Regression 354 |
| 11.2.1 Least Squares Method of Estimation 354 |
| 11.3 Other Regression Models 357 |
| Reference 359 |
| Further Reading 359 |
| Problems 359 |
| APPENDIX A: TABLES 365 |
| A.1 Binomial Mass Function 365 |
| A.2 Poisson Mass Function 367 |
| A.3 Standardized Normal Distribution Function 369 |
| A.4 Student’s t Distribution with n Degrees of Freedom 370 |
| A.5 Chi-Squared Distribution with n Degrees of Freedom 371 |
| A.6 D2 Distribution with Sample Size n 372 |
| References 373 |
| APPENDIX B: COMPUTER SOFTWARE 375 |
| APPENDIX C: ANSWERS TO SELECTED PROBLEMS 379 |
| Chapter 2 379 |
| Chapter 3 380 |
| Chapter 4 381 |
| Chapter 5 382 |
| Chapter 6 384 |
| Chapter 7 385 |
| Chapter 8 385 |
| Chapter 9 385 |
| Chapter 10 386 |
| Chapter 11 386 |
| SUBJECT INDEX 389 |
________________________________________________________________________________________________
kA Kit Tung, Partial differential equations and Fourier analysis
lingua: inglese tecnico.
ISBN: NA
Le equazioni differenziali alle derivate parziali sono un argomento davvero interessante e davvero sorprendente per il numero di applicazioni in campo fisico. Quelle lineari non possono non essere nel bagaglio culturale matematico di qualunque tecnico.
Potete consultare qui l'intero libro. Il primo capitolo effettua una review delle equazioni differenziali ordinarie, il secondo invece tratta le origini fisiche delle equazioni differenziali alle derivate parziali confrontandole con quelle ordinarie. Gli altri capitoli entrano nel merito e discutono le tecniche di soluzione, anche tramite l'analisi di Fourier.
Libri di livello avanzato:
Dopo tutta questa faticaccia potete prendervi una meritatissima vacanza.
________________________________________________________________________________________________
Carl M. Bender, Steven A. Orszag, ADVANCED MATHEMATICAL METHODS FOR SCIENTISTS AND ENGINEERS McGRAW-HILL BOOK COMPANY
lingua: inglese tecnico.
ISBN: 0-07-004452-X
Un libro bello, bello, bello di matematica avanzata, dai fondamenti delle equazioni differenziali e ai metodi perturbativi fino alle approssimazioni WKB, con tutte le discussioni sui fenomeni di tunnelling. Non sempre semplicissimo ma davvero bello.
| Preface |
| PART I |
| FUNDAMENTALS |
| 1 Ordinary Differential Equations |
| 2 Difference Equations |
| PART II |
| LOCAL ANALYSIS |
| 3 Approximate Solution of Linear Differential Equations |
| 4 Approximate Solution of Nonlinear Differential Equations |
| 5 Approximate Solution of Difference Equations |
| 6 Asymptotic Expansion of Integrals |
| PART III |
| PERTURBATION METHODS |
| 7 Perturbation Series |
| 8 Summation of Series |
| PART IV |
| GLOBAL ANALYSIS |
| 9 Boundary Layer Theory |
| 10 WKB Theory |
________________________________________________________________________________________________
M. Taylor,Partial Differential Equations Vol 1 - Basic Theory - Springer
lingua: inglese tecnico.
ISBN: 978-1-4419-7054-1
Ecco un ottimo libro di livello avanzato sulle equazioni differenziali alle derivate parziali. In pratica si tratta di una introduzione più rigorosa e più dettagliata rispetto a quella presente nell'ultimo libro di livello intermedio.
Indice:
| Contents of Volumes II and III xi |
| Preface . . xiii |
| 1 Basic Theory of ODE and Vector Fields . 1 |
| 1 The derivative 3 |
| 2 Fundamental local existence theorem for ODE . 9 |
| 3 Inverse function and implicit function theorems 12 |
| 4 Constant-coefficient linear systems; exponentiation of matrices 16 |
| 5 Variable-coefficient linear systems of ODE: Duhamel’s principle . 26 |
| 6 Dependence of solutions on initial data and on other parameters. . 31 |
| 7 Flows and vector fields . 35 |
| 8 Lie brackets . 40 |
| 9 Commuting flows; Frobenius’s theorem 43 |
| 10 Hamiltonian systems . 47 |
| 11 Geodesics . 51 |
| 12 Variational problems and the stationary action principle . 59 |
| 13 Differential forms 70 |
| 14 The symplectic form and canonical transformations . 83 |
| 15 First-order, scalar, nonlinear PDE . 89 |
| 16 Completely integrable hamiltonian systems 96 |
| 17 Examples of integrable systems; central force problems . 101 |
| 18 Relativistic motion . 105 |
| 19 Topological applications of differential forms 110 |
| 20 Critical points and index of a vector field . 118 |
| A Nonsmooth vector fields . 122 |
| References . . 125 |
| 2 The Laplace Equation and Wave Equation . 127 |
| 1 Vibrating strings and membranes. . 129 |
| 2 The divergence of a vector field . 140 |
| 3 The covariant derivative and divergence of tensor fields . 145 |
| 4 The Laplace operator on a Riemannian manifold 153 |
| 5 The wave equation on a product manifold and energy conservation 156 |
| 6 Uniqueness and finite propagation speed . 162 |
| 7 Lorentz manifolds and stress-energy tensors . 166 |
| 8 More general hyperbolic equations; energy estimates 172 |
| viii Contents |
| 9 The symbol of a differential operator and a general |
| Green–Stokes formula . 176 |
| 10 The Hodge Laplacian on k-forms . 180 |
| 11 Maxwell’s equations . 184 |
| References . . 194 |
| 3 Fourier Analysis, Distributions,and Constant-Coefficient Linear PDE . 197 |
| 1 Fourier series . 198 |
| 2 Harmonic functions and holomorphic functions in the plane 209 |
| 3 The Fourier transform. . 222 |
| 4 Distributions and tempered distributions 230 |
| 5 The classical evolution equations . 244 |
| 6 Radial distributions, polar coordinates, and Bessel functions. . 263 |
| 7 The method of images and Poisson’s summation formula . 273 |
| 8 Homogeneous distributions and principal value distributions . 278 |
| 9 Elliptic operators . 286 |
| 10 Local solvability of constant-coefficient PDE 289 |
| 11 The discrete Fourier transform 292 |
| 12 The fast Fourier transform . 301 |
| A The mighty Gaussian and the sublime gamma function. . 306 |
| References . . 312 |
| 4 Sobolev Spaces 315 |
| 1 Sobolev spaces on Rn 315 |
| 2 The complex interpolation method . . 321 |
| 3 Sobolev spaces on compact manifolds . . 328 |
| 4 Sobolev spaces on bounded domains . 331 |
| 5 The Sobolev spaces Hs |
| 6 The Schwartz kernel theorem. . 345 |
| 7 Sobolev spaces on rough domains . 349 |
| References . . 351 |
| 5 Linear Elliptic Equations 353 |
| 1 Existence and regularity of solutions to the Dirichlet problem 354 |
| 2 The weak and strong maximum principles 364 |
| 3 The Dirichlet problem on the ball in Rn 373 |
| 4 The Riemann mapping theorem (smooth boundary) . 379 |
| 5 The Dirichlet problem on a domain with a rough boundary . 383 |
| 6 The Riemann mapping theorem (rough boundary) . 398 |
| 7 The Neumann boundary problem . 402 |
| 8 The Hodge decomposition and harmonic forms 410 |
| 9 Natural boundary problems for the Hodge Laplacian 421 |
| 10 Isothermal coordinates and conformal structures on surfaces . 438 |
| 11 General elliptic boundary problems . 441 |
| 12 Operator properties of regular boundary problems . 462 |
| Contents ix |
| A Spaces of generalized functions on manifolds with boundary . 471 |
| B The Mayer–Vietoris sequence in deRham cohomology . . 475 |
| References . . 478 |
| 6 Linear Evolution Equations . 481 |
| 1 The heat equation and the wave equation on bounded domains . 482 |
| 2 The heat equation and wave equation on unbounded domains 490 |
| 3 Maxwell’s equations . 496 |
| 4 The Cauchy–Kowalewsky theorem . 499 |
| 5 Hyperbolic systems 504 |
| 6 Geometrical optics . 510 |
| 7 The formation of caustics 518 |
| 8 Boundary layer phenomena for the heat semigroup . . 535 |
| A Some Banach spaces of harmonic functions . . 541 |
| B The stationary phase method 543 |
| References . . 545 |
| A Outline of Functional Analysis 549 |
| 1 Banach spaces 549 |
| 2 Hilbert spaces 556 |
| 3 Fr´echet spaces; locally convex spaces . 561 |
| 4 Duality 564 |
| 5 Linear operators 571 |
| 6 Compact operators . 579 |
| 7 Fredholm operators 593 |
| 8 Unbounded operators 596 |
| 9 Semigroups . 603 |
| References . . 615 |
| B Manifolds, Vector Bundles, and Lie Groups . 617 |
| 1 Metric spaces and topological spaces . 617 |
| 2 Manifolds . 622 |
| 3 Vector bundles 624 |
| 4 Sard’s theorem. . 626 |
| 5 Lie groups 627 |
| 6 The Campbell–Hausdorff formula 630 |
| 7 Representations of Lie groups and Lie algebras 632 |
| 8 Representations of compact Lie groups . 636 |
| 9 Representations of SU(2) and related groups . 641 |
| References . . 647 |
| Index 649[/code] |
________________________________________________________________________________________________
M. Taylor,Partial Differential Equations Vol 2 - Qualitative Studies of Linear Equations- Springer
Il secondo volume approfondisce quanto trattato nel primo. Sono introdotte le tecniche analitiche e gli operatori pseudodifferenziali, incluse le misure di Wiener. Interessantissime le discussioni sugli operatori ellittici, la teoria dello scattering, la teoria degli operatori di Dirac, la teoria del moto Browniano e le equazioni della diffusione.
lingua: inglese tecnico.
ISBN: 1441970517
Indice:
| Qualitative Studies of Linear Equations |
| 7 Pseudodifferential Operators |
| 8 Spectral Theory |
| 9 Scattering by Obstacles |
| 10 Dirac Operators and Index Theory |
| 11 Brownian Motion and Potential Theory |
| 12 The 3-Neumann Problem |
| C Connections and Curvature |
________________________________________________________________________________________________
M. Taylor,Partial Differential Equations Vol 3 - Non linear equation - Springer
lingua: inglese tecnico.
ISBN: 0387946527
Questo è un libro di livello davvero avanzato: vengono discusse le equazioni alle derivate parziali non lineari. Ho deciso di inserire questo libro per continuità con gli altri due, altrimenti non l'avrei fatto. Si discute la meccanica relativistica e numerosi problemi di geometria differenziale, come il problema delle superifici minime e le mappe armoniche. Vengono studiati anche i problemi di diffusione non lineare, spazi di Sobolev,spazi di Holder, spazi di Hardy e di Morrey. Vengono trattati gli operatori paradifferenziali tramite molecolarità di calcolo. Molto faticoso e per veri duri. Do not try this at home.
________________________________________________________________________________________________
Eugenio Hernftndez, A First Course on WAVELETS, CRC Press
lingua: inglese tecnico, ogni tanto, forse, un po' troppo spagnoleggiante (ma per un Italiano è un bene).
ISBN: 0-8493-8274-2
Vi siete mai chiesti cosa sono le wavelets? Le mother-function? Le father-function (sì, ci sono anche loro)? Volete diventare dei veri esperti nel campo dell'analisi dei segnali? questo libro fa decisamente per voi.
| Bases for L2(R) |
| 1.1 Preliminaries |
| 1.2 Orthonormal bases generated by a single function; the Balian- Low theorem |
| 1.3 Smooth projections on L2(R) |
| 1.4 Local sine and cosine bases and the construction of some wavelets |
| 1.5 The unitary folding operators and the smooth projections |
| 1.6 Notes and references |
| 2 Multiresolution analysis and the construction of wavelets |
| 2.1 Multiresolution analysis |
| 2.2 Construction of wavelets from a multiresolution analysis |
| 2.3 The construction of compactly supported wavelets |
| 2.4 Better estimates for the smoothness of compactly supported wavelets |
| 2.5 Notes and references Band-limited wavelets |
| 3.1 Orthonormality |
| 3.2 Completeness |
| 3.3 The Lemari-Meyer wavelets revisited |
| 3.4 Characterization of some band-limited wavelets |
| 3.5 Notes and references |
| 4 Other constructions of wavelets |
| 4.1 Franklin wavelets on the real line |
| 4.2 Spline wavelets on the real line |
| 4.3 Orthonormal bases of piecewise linear continuous functions for L2 |
| 4.4 Orthonormal bases of periodic splines |
| 4.5 Periodization of wavelets defined on the real line |
| 4.6 Notes and references Representation of functions by wavelets |
| 5.1 Bases for Banach spaces |
| 5.2 Unconditional bases for Banach spaces |
| 5.3 Convergence of wavelet expansions in LP(R) |
| 5.4 Pointwise convergence of wavelet expansions |
| 5.5 H and B on R |
| 5.6 Wavelets as unconditional bases for H' and LP |
| 5.7 Notes and references |
| Characterizations of function spaces using wavelets |
| 6.1 Wavelets and sampling theorems |
| 6.2 Littlewood-Paley theory |
| 6.3 Necessary tools |
| 6.4 The Lebesgue spaces |
| 6.5 The Hardy space |
| 6.6 The Sobolev spaces |
| 6.7 The Lipschitz spaces , and the Zygmund class A. (R) |
Programmi per la matematica:
In questa sezione volevo inserire qualche libro, destinato al matematico di professione, per imparare ad usare i tool più belli di manipolazione matematica. La preghiera è però di non usarli se non si ha ben chiaro che cosa si stia facendo. Troppe volte mi è capitato di vedere persone che trovavano risultati un po' "esotici" senza rendersi minimamente conto del madornale errore (velocità complesse o pari a 4c, Energie di TJ, Temperature pari a -100K, rendimenti pari a 10, probabilità negative...). Purtroppo però molto spesso le cose non vanno così bene. Capita, talvolta, che il risultato sia verosimile ma errato e, da questa eventualità, non c'è difesa se non quella data dall'occhio esperto e dal controllo attento di chi inserisce il modello fisico all'interno del tool matematico. Gli inglesi dicono "do not toy with fire".
________________________________________________________________________________________________
Ferdinand E Cap, MATHEMATICAL METHODS in PHYSICS and ENGINEERING with MATHEMATICA, CHAPMAN & HALL/CRC, A CRC Press Company.
lingua: inglese tecnico.
ISBN: 1-58488-402-9
Un bel libro con un sacco di problemi risolti con Mathematica, il famoso tool di Stephen Wolfram. Armatevi di the e biscottini per sopportare le lunghe attese date dalla ricerca della soluzione di qualche annoso problema... E' utile togliersi qualche curiosità su alcuni problemi riportati su questo libro, facendo fare tutti i conti a Mathematica!
| Contents |
| Introduction |
| 1.1 What is a boundary problem? |
| 1.2 Classification of partial differential equations |
| 1.3 Types of boundary conditions and the collocation method |
| 1.4 Differential equations as models for nature |
| 2 Boundary problems of ordinary differential equations |
| 2.1 Linear differential equations |
| 2.2 Solving linear differential equations |
| 2.3 Differential equations of physics and engineering |
| 2.4 Boundary value problems and eigenvalues |
| 2.5 Boundary value problems as initial value problems |
| 2.6 Nonlinear ordinary differential equations |
| 2.7 Solutions of nonlinear differential equations |
| Partial differential equations |
| 3.1 Coordinate systems and separability |
| 3.2 Methods to reduce partial to ordinary differential equations |
| 3.3 The method of characteristics |
| 3.4 Nonlinear partial differential equations |
| 4 Boundary problems with one closed boundary |
| 4.1 LAPLACE and POISSON equations |
| 4.2 Conformal mapping in two and three dimensions |
| 4.3 D'ALEMBERT wave equation and string vibrations |
| 4.4 HELMHOLTZ equation and membrane vibrations |
| 4.5 Rods and the plate equation |
| 4.6 Approximation methods |
| 4.7 Variational calculus |
| 4.8 Collocation methods |
| Boundary problems with two closed boundaries |
| 5.1 Inseparable problems |
| 5.2 Holes in the domain. Two boundaries belonging to different |
| coordinate systems . |
| 5.3 Corners in the boundary |
| Nonlinear boundary problems |
| 6.1 Some definitions and examples |
| 6.2 Moving and free boundaries |
| 6.3 Waves of large amplitudes. Solirons |
| 6.4 The rupture of an embankment-type water dam |
| 6.5 Gas flow with combustion |
| References |
| Appendix |
________________________________________________________________________________________________
J. Manassah, Elem. Math. and Comp. Tools for Engineers using MATLAB ,CRC Press
lingua: inglese tecnico.
ISBN: 0-8493-1080-6
Una rapida occhiata all'indice di questo libro vi farà pienamente comprendere quanti problemi possano essere trattati con Matlab.
| 1. Introduction to MATLAB® and Its Graphics Capabilities |
| 1.1 Getting Started |
| 1.2 Basic Algebraic Operations and Functions |
| 1.3 Plotting Points |
| 1.3.1 Axes Commands |
| 1.3.2 Labeling a Graph |
| 1.3.3 Plotting a Point in 3-D |
| 1.4 M-files |
| 1.5 MATLAB Simple Programming |
| 1.5.1 Iterative Loops |
| 1.5.2 If-Else-End Structures |
| 1.6 Array Operations |
| 1.7 Curve and Surface Plotting |
| 1.7.1 x-y Parametric Plot |
| 1.7.2 More Parametric Plots in 2-D |
| 1.7.3 Plotting a 3-D Curve |
| 1.7.4 Plotting a 3-D Surface |
| 1.8 Polar Plots |
| 1.9 Animation |
| 1.10 Histograms |
| 1.11 Printing and Saving Work in MATLAB |
| 1.12 MATLAB Commands Review |
| 2. Difference Equations |
| 2.1 Simple Linear Forms |
| 2.2 Amortization |
| 2.3 An Iterative Geometric Construct: The Koch Curve |
| 2.4 Solution of Linear Constant Coefficients Difference Equations |
| 2.4.1 Homogeneous Solution |
| 2.4.2 Particular Solution |
| 2.4.3 General Solution |
| 2.5 Convolution-Summation of a First-Order System with Constant Coefficients |
| 2.6 General First-Order Linear Difference Equations* |
| 2.7 Nonlinear Difference Equations |
| 2.7.1 Computing Irrational Numbers |
| 2.7.2 The Logistic Equation2.8 Fractals and Computer Art |
| 2.8.1 Mira’s Model |
| 2.8.2 Hénon’s Model |
| 2.9 Generation of Special Functions from Their Recursion Relations |
| 3. Elementary Functions and Some of Their Uses |
| 3.1 Function Files |
| 3.2 Examples with Affine Functions |
| 3.3 Examples with Quadratic Functions |
| 3.4 Examples with Polynomial Functions |
| 3.5 Examples with Trigonometric Functions |
| 3.6 Examples with the Logarithmic Function |
| 3.6.1 Ideal Coaxial Capacitor |
| 3.6.2 The Decibel Scale |
| 3.6.3 Entropy |
| 3.7 Examples with the Exponential Function |
| 3.8 Examples with the Hyperbolic Functions and Their Inverses |
| 3.8.1 Capacitance of Two Parallel Wires |
| 3.9 Commonly Used Signal Processing Functions |
| 3.10 Animation of a Moving Rectangular Pulse |
| 3.11 MATLAB Commands Review |
| 4. Numerical Differentiation, Integration, and Solutions of Ordinary Differential Equations |
| 4.1 Limits of Indeterminate Forms |
| 4.2 Derivative of a Function |
| 4.3 Infinite Sums |
| 4.4 Numerical Integration |
| 4.5 A Better Numerical Differentiator |
| 4.6 A Better Numerical Integrator: Simpson’s Rule |
| 4.7 Numerical Solutions of Ordinary Differential Equations |
| 4.7.1 First-Order Iterator |
| 4.7.2 Higher-Order Iterators: The Runge-Kutta Method |
| 4.7.3 MATLAB ODE Solvers |
| 4.8 MATLAB Commands Review |
| 5. Root Solving and Optimization Methods |
| 5.1 Finding the Real Roots of a Function |
| 5.1.1 Graphical Method |
| 5.1.2 Numerical Methods |
| 5.1.3 MATLAB fsolve and fzero Built-in Functions |
| 5.2 Roots of a Polynomial5.3 Optimization Methods |
| 5.3.1 Graphical Method |
| 5.3.2 Numerical Methods |
| 5.3.3 MATLAB fmin and fmins Built-in Function |
| 5.4 MATLAB Commands Review |
| 6. Complex Numbers |
| 6.1 Introduction |
| 6.2 The Basics |
| 6.2.1 Addition |
| 6.2.2 Multiplication by a Real or Imaginary Number |
| 6.2.3 Multiplication of Two Complex Numbers |
| 6.3 Complex Conjugation and Division |
| 6.3.1 Division |
| 6.4 Polar Form of Complex Numbers |
| 6.4.1 New Insights into Multiplication and Division |
| of Complex Numbers |
| 6.5 Analytical Solutions of Constant Coefficients ODE |
| 6.5.1 Transient Solutions |
| 6.5.2 Steady-State Solutions |
| 6.5.3 Applications to Circuit Analysis |
| 6.6 Phasors |
| 6.6.1 Phasor of Two Added Signals |
| 6.7 Interference and Diffraction of ElectromagneticWaves |
| 6.7.1 The ElectromagneticWave |
| 6.7.2 Addition of ElectromagneticWaves |
| 6.7.3 Generalization to N-waves |
| 6.8 Solving ac Circuits with Phasors: The Impedance Method |
| 6.8.1 RLC Circuit Phasor Analysis |
| 6.8.2 The Infinite LC Ladder |
| 6.9 Transfer Function for a Difference Equation wit Constant Coefficients |
| 6.10 MATLAB Commands Review |
| 7. Vectors |
| 7.1 Vectors in Two Dimensions (2-D) |
| 7.1.1 Addition |
| 7.1.2 Multiplication of a Vector by a Real Number |
| 7.1.3 Cartesian Representation |
| 7.1.4 MATLAB Representation of the Above Results |
| 7.2 Dot (or Scalar) Product |
| 7.2.1 MATLAB Representation of the Dot Product |
| 7.3 Components, Direction Cosines, and Projections |
| 7.3.1 Components7.3.2 Direction Cosines |
| 7.3.3 Projections |
| 7.4 The Dirac Notation and Some General Theorems* |
| 7.4.1 Cauchy-Schwartz Inequality |
| 7.4.2 Triangle Inequality |
| 7.5 Cross Product and Scalar Triple Product* |
| 7.5.1 Cross Product |
| 7.5.2 Geometric Interpretation of the Cross Product |
| 7.5.3 Scalar Triple Product |
| 7.6 Vector Valued Functions |
| 7.7 Line Integral |
| 7.8 Infinite Dimensional Vector Spaces* |
| 7.9 MATLAB Commands Review |
| 8. Matrices |
| 8.1 Setting up Matrices |
| 8.1.1 Creating Matrices in MATLAB |
| 8.2 Adding Matrices |
| 8.3 Multiplying a Matrix by a Scalar |
| 8.4 Multiplying Matrices |
| 8.5 Inverse of a Matrix |
| 8.6 Solving a System of Linear Equations |
| 8.7 Application of Matrix Methods |
| 8.7.1 dc Circuit Analysis |
| 8.7.2 dc Circuit Design |
| 8.7.3 ac Circuit Analysis |
| 8.7.4 Accuracy of a Truncated Taylor Series |
| 8.7.5 Reconstructing a Function from Its Fourier Components |
| 8.7.6 Interpolating the Coefficients of an (n – 1)-degree Polynomial from n Points |
| 8.7.7 Least-Square Fit of Data |
| 8.8 Eigenvalues and Eigenvectors* |
| 8.8.1 Finding the Eigenvalues of a Matrix |
| 8.8.2 Finding the Eigenvalues and Eigenvectors Using MATLAB |
| 8.9 The Cayley-Hamilton and Other Analytical Techniques* |
| 8.9.1 Cayley-Hamilton Theorem |
| 8.9.2 Solution of Equations of the Form |
| 8.9.3 Solution of Equations of the Form |
| 8.9.4 Pauli Spinors |
| 8.10 Special Classes of Matrices* |
| 8.10.1 Hermitian Matrices |
| 8.10.2 Unitary Matrices |
| 8.10.3 Unimodular Matrices |
| 8.11 MATLAB Commands Review |
| 9. Transformations |
| 9.1 Two-dimensional (2-D) Geometric Transformations |
| 9.1.1 Polygonal Figures Construction |
| 9.1.2 Inversion about the Origin and Reflection about the Coordinate Axes |
| 9.1.3 Rotation around the Origin |
| 9.1.4 Scaling |
| 9.1.5 Translation |
| 9.2 Homogeneous Coordinates |
| 9.3 Manipulation of 2-D Images |
| 9.3.1 Geometrical Manipulation of Images |
| 9.3.2 Digital Image Processing |
| 9.3.3 Encrypting an Image |
| 9.4 Lorentz Transformation* |
| 9.4.1 Space-Time Coordinates |
| 9.4.2 Addition Theorem for Velocities |
| 9.5 MATLAB Commands Review |
| 10. A Taste of Probability Theory |
| 10.1 Introduction |
| 10.2 Basics |
| 10.3 Addition Laws for Probabilities |
| 10.4 Conditional Probability |
| 10.4.1 Total Probability and Bayes Theorems |
| 10.5 Repeated Trials |
| 10.5.1 Generalization of Bernoulli Trials |
| 10.6 The Poisson and the Normal Distributions |
| 10.6.1 The Poisson Distribution |
| 10.6.2 The Normal Distributio Supplement: Review of Elementary Functions |
| S.1 Affine Functions |
| S.2 Quadratic Functions |
| S.3 Polynomial Functions |
| S.4 Trigonometric Functions |
| S.5 Inverse Trigonometric Functions |
| S.6 The Natural Logarithmic Function |
| S.7 The Exponential Function |
| S.8 The Hyperbolic Functions |
| S.9 The Inverse Hyperbolic Functions |
| Appendix: Some Useful Formulae |
| Addendum: MATLAB 6 |
| Selected References |
Conclusioni:
Concludo con alcune citazioni, utili per meglio comprendere il linguaggio matematico, del matematico statunitense Sean Mauch:
- Phrases often have different meanings in mathematics than in everyday usage. Here I have collected definitions of some mathematical terms which might confuse the novice.
- beyond the scope of this text: Beyond the comprehension of the author.
- difficult: Essentially impossible. Note that mathematicians never refer to problems they have solved as being difficult. This would either be boastful, (claiming that you can solve difficult problems), or self-deprecating, admitting that you found the problem to be difficult).
- interesting: This word is grossly overused in math and science. It is often used to describe any work that the author has done, regardless of the work's significance or novelty. It may also be used as a synonym for difficult. It has a completely different meaning when used by the non-mathematician. When I tell people that I am a mathematician they typically respond with: "That must be interesting.", which means: "I don't know anything about math or what mathematicians do." I typically answer, "No. Not really."
- non-obvious or non-trivial: Real fuckin' hard.
- one can prove that . . . : The "one" that proved it was a genius like Gauss. The phrase literally means "you haven't got a chance in hell of proving that . . . "
- simple: Mathematicians communicate their prowess to colleagues and students by referring to all problems as simple or trivial. If you ever become a math professor, introduce every example as being "really quite trivial."
Una volta si diceva "e non finisce qui". Per adesso, invece, la cosa finisce proprio qui. Questo però non vuol dire che, nel caso in cui mi venga in mente qualche altro bel libro che mi è piaciuto studiare, non possa nuovamente rendervi partecipi di un po' di quella che, per me, è bella matematica.

Elettrotecnica e non solo (admin)
Un gatto tra gli elettroni (IsidoroKZ)
Esperienza e simulazioni (g.schgor)
Moleskine di un idraulico (RenzoDF)
Il Blog di ElectroYou (webmaster)
Idee microcontrollate (TardoFreak)
PICcoli grandi PICMicro (Paolino)
Il blog elettrico di carloc (carloc)
DirtEYblooog (dirtydeeds)
Di tutto... un po' (jordan20)
AK47 (lillo)
Esperienze elettroniche (marco438)
Telecomunicazioni musicali (clavicordo)
Automazione ed Elettronica (gustavo)
Direttive per la sicurezza (ErnestoCappelletti)
EYnfo dall'Alaska (mir)
Apriamo il quadro! (attilio)
H7-25 (asdf)
Passione Elettrica (massimob)
Elettroni a spasso (guidob)
Bloguerra (guerra)